§ 3 式の値

1.
$$x = \frac{4}{3+\sqrt{5}}$$
, $y = \frac{4}{3-\sqrt{5}}$ のとき、 $x^2 + y^2$, $x^3 + y^3$, $\sqrt{x} - \sqrt{y}$ の値を求めよ。

(名城大)

2.
$$x+y+z=2$$
, $xy+yz+zx=1$, $xyz=-1$ のとき、次の式の値を求めよ。

(1)
$$x^2 + y^2 + z^2$$

(2)
$$x^3 + y^3 + z^3$$

(3)
$$x^2(y+z) + y^2(z+x) + z^2(x+y) - 3xyz - (x+y+z)$$

(山形大)

3.
$$a+b=5$$
, $ab=3$ のとき、 $a^2+b^2=[\mathcal{T}]$, $a^3+b^3=[\mathcal{T}]$, $a^5+b^5=[\dot{\mathcal{T}}]$ である。

(愛知学泉大)

4.
$$x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ のとき、 $x + y = [r]$, $xy = [f]$ である。したがって

(九州国際大)

5.
$$x + y = 1$$
, $x^2 + y^2 = 3$ のとき、次の式の値を求めよ。

(1)
$$x^3 + y^3$$

(2)
$$x^7 + y^7$$

(東北学院大)

6.
$$x + y + z = 6$$
, $xy + yz + zx = 4$, $xyz = 3$ のとき、次の式の値を求めよ。

(1)
$$x^3 + y^3 + z^3$$

(2)
$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}$$

(3)
$$(x-y)^2 + (y-z)^2 + (z-x)^2$$

(神戸国際大)

7.
$$a,b,c$$
が $a+b+c=1$, $a^2+b^2+c^2=3$, $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ を満たすとき、

(1) *abc* の値を求めよ。

(2)
$$a^3 + b^3 + c^3 - 3abc$$
 の値を求めよ。

(3)
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$$
 の値を求めよ。

(鳥取大)

8.
$$x + \frac{1}{x} = 5$$
 のとき、 $x^2 + \frac{1}{x^2}$, $x^3 + \frac{1}{x^3}$, $x - \frac{1}{x}$ の値を求めよ。

(中央大)

9.
$$a = \frac{\sqrt{6} + \sqrt{2}}{2}$$
 のとき、 $a + \frac{1}{a} = [\mathcal{T}]$ となり、 $a^2 + \frac{1}{a^2} = [\mathcal{T}]$ となる。

また、
$$a^3 + \frac{1}{a^3} = [c]$$
となり、 $a^4 - \frac{1}{a^4} = [x]$ となる。

(摂南大)

10.
$$x-\frac{1}{x}=\sqrt{3}$$
, $x>0$ のとき、 $x+\frac{1}{x}$, $x^3-\frac{1}{x^3}$ の値を求めよ。

(金沢工業大)

11.
$$x^2 - 3x + 1 = 0$$
 のとき、 $x + \frac{1}{x} = [\mathcal{T}]$ であり、 $x^2 + \frac{1}{x^2} = [\mathcal{T}]$ である。

(千葉工業大)

12.
$$x^2 + \frac{1}{x^2} = 3$$
 のとき、次の式の値を求めよ。

(ア)
$$x^3 + \frac{1}{x^3}$$
 (イ) $x^4 + \frac{1}{x^4}$ (ウ) $x^5 + \frac{1}{x^5}$

(岐阜女子大)

13.
$$a > 1$$
 とする。 $a^2 + \frac{1}{a^2} = 7$ のとき、 $a - \frac{1}{a}$, $a^2 - \frac{1}{a^2}$, $a^3 + \frac{1}{a^3}$, $a^4 + \frac{1}{a^4}$ の値を求めよ。

(近畿大)

14.
$$(4\sqrt{2}-2)(2+3\sqrt{2})$$
の整数部分を求めよ。

(法政大)

15.
$$\frac{1}{2-\sqrt{3}}$$
 の整数部分を a 、小数部分を b とする。 $a=[r]$ 、 $b=[r]$ 、

$$b^3 + 2a(1-b) = [ウ]$$
である。

(東海大)

- 16. $\frac{1}{\sqrt{2}-1}$ の整数部分をa、小数部分をbとおく。
- (1) aの値を求めよ。
- (2) $b^2 + 2b + 3$ の値を求めよ。

(明治大)

17. $\frac{\sqrt{5}+2}{\sqrt{5}-2}$ の分母を有理化すると、[ア]となり、その整数部分は[イ]であり、小数部

分をaとするとき、 $a+\frac{4}{a}$ の値は[ウ]となる。

(明治学院大)

18. $\sqrt{14+6\sqrt{5}}$ の整数部分をa、小数部分をb とする。このとき、a , b^2 + $\frac{1}{b^2}$, b^3 + $\frac{1}{b^3}$ の値を求めよ。

(青山学院大)

19. \sqrt{n} の整数部分が50であるような自然数nは[]個ある。

(立教大)

求值問題

- 1. 順に $28,144,-\sqrt{2}$
- 3. [ア] 19 [イ] 80 [ウ]1475
- 5. (1) 4 (2) 29
- 7. (1) -1 (2) 4 (3) 3
- 9. $[7]\sqrt{6}$ [イ] 4 $[7]\sqrt{6}$ [エ] $8\sqrt{3}$ 10. 順に $\sqrt{7}$, $6\sqrt{3}$
- 11. [ア]3[イ]7
- 13. 順に $\sqrt{5}$, $3\sqrt{5}$, 18, 47
- 15. $[7]3[7]\sqrt{3}-1[7]2$
- 17. $[\mathcal{T}]9+4\sqrt{5}$ [イ]17 [ウ] $5\sqrt{5}-6$
- 19. 101

- 2. (1) 2 (2) -1 (3) 0
- 4. [ア]10[イ]1[ウ]98 [エ] 970 [オ] 9602
- 6. (1) 153 (2) $-\frac{20}{9}$ (3) 48
- 8. 順に23,110, $\pm\sqrt{21}$
- 12. $[7] \pm 2\sqrt{5} [4] 7 [7] \pm 5\sqrt{5}$
- 14. 22
- 16. (1) 2 (2) 4
- 18. 順に5,18,34√5