面積

#例題 1 #関数 $f(x) = \int_1^x \log t dt \ (x \ge 1)$ について、次の問いに答えよ。

- (1) $\int_1^x \log t dt$ を計算せよ。また、y = f(x) のグラフを書け。
- (2) 曲線 y = f(x)の x 軸および直線 x = 2 で囲まれた図形の面積を求めよ。 (岩手大)

#例題2 # 2曲線 $y = \sin \frac{\pi}{2} x$ と $y = x^4$ とで囲まれる部分の面積を求めよ。

(長岡技科大)

#例題3 # $0 \le x \le \frac{\pi}{2}$ において、曲線 $y = a \sin x (a \text{ は定数})$ を C_1 、 $y = \tan x$ を C_2 とする。このとき、次の問いに答えよ。

- (1) 2 曲線 C_1 、 C_2 が 2 点で交わるような a の値の範囲を求めよ。
- (2) a の値が(1)で求めた範囲にあるとき、2 つの曲線 C_1 と C_2 で囲まれる部分の面積を求めよ。

(宮崎大)

例題 4 # 曲線 xy=1 (x>0) と 2 直線 y=ax , y=akx (a>0 , k>1) で囲まれた図形の面積が $\frac{1}{2}\log 3$ であるとき、k の値を求めよ。

(中部大)

#例題 5 #曲線 $y = x \sin 2x$ $(0 \le x \le \frac{\pi}{2})$ を C とし、点 $(a, a \sin 2a)$ $(0 < a < \frac{\pi}{2})$ における接線 l が原点を通るとき、次の各間に答えよ。

- (1) 接線 l の方程式を求めよ。
- (2) 曲線 C と接線 l で囲まれる部分の面積を求めよ。

(宮崎大)

#例題 6 #曲線 $y = \log x$ 上に定点 A(1,0), B(e,1) と動点 $P(t,\log t)$ (1 < t < e) がある。

- (1) 曲線と折れ線 APB で囲まれる部分の面積 S(t) を求めよ。
- (2) S(t) の最小値を求めよ。

(神奈川大)

#例題7 # xy 平面上に、媒介変数を用いて表された曲線

$$x=2\sqrt{2}\cos\theta$$
 , $y=\frac{1}{2}\sin2\theta\left(0\le\theta\le\frac{\pi}{2}\right)$ がある。この曲線と x 軸とで囲まれた部分の面積を求めよ。

(山梨大)

〇問題

◆曲線と直線とで囲まれる図形の面積

1. 曲線 $y = x \log x$ ($1 \le x$) と直線 x = e と x 軸とで囲まれる図形の面積を求めよ。ただし、e は自然対数の底とする。

(東京農工大)

2. 領域 $\left\{(x,y) \mid \frac{1}{2} \le y \le \sin x, 0 \le x \le 2\pi\right\}$ の面積を求めよ。

(工学院大)

3. 関数 $f(x) = e^x \sin x$ $(0 \le x \le \pi)$ について、曲線 y = f(x) と x 軸とで囲まれた図形を A とする。 A の面積を求めよ。ただし、e は自然対数の底とする。

(神奈川大)

- **4**. 関数 $f(x) = (1 \log x) \log x (x > 0)$ について、
 - (1) 方程式 f(x) = 0 を解け。
 - (2) 関数 f(x) の極値とそのときのx の値を求めよ。
 - (3) 曲線 y = f(x)の $y \ge 0$ の部分と x 軸の囲む図形の面積を求めよ。

- **5**. 関数 $f(x) = \cos x + \cos 2x$ について
 - (1) $0 \le x \le \pi$ における関数 f(x) の極小値を求めよ。
 - (2) (1) において、極小値を与える点の x 座標を a とする。 このとき、曲線 $f(x) = \cos x + \cos 2x$ ($a \le x \le \pi$)、直線 x = a および x 軸で囲まれる部分の面積を求めよ。

(九州芸工大)

◆2曲線で囲まれる図形の面積

6. 曲線 $|x|^{\frac{1}{2}} + |y|^{\frac{1}{2}} = 1$ で囲まれる図形の面積を求めよ。

(大阪工大)

- **7**. 関数 $f_1(x) = \tan \frac{\pi}{4} x (-2 < x < 2)$ の逆関数を $f_2(x)$ とする。
 - 2 曲線 $y = f_1(x)$, $y = f_2(x)$ で囲まれた図形の面積を求めよ。

(芝浦工大)

- **8**. $a \in 0 < a < \frac{\pi}{4} \ge \cos a = \tan a$ をみたす定数とする。
 - (1) $\sin a \ge \cos a$ の値を求めよ。
 - (2) 2 曲線 $y = \cos x$ と $y = \tan x$ の交点 $(a, \cos a)$ におけるそれぞれの接線は互いに直交することを証明せよ。
 - (3) $0 \le x \le \frac{\pi}{4}$ の範囲で、3 曲線 $y = \cos x$ 、 $y = \tan x$ 、 $y = \sin x$ によって囲まれた 図形の面積を求めよ。

(静岡大)

- **9**. 2曲線 $v = \sin x$ 、 $v = 2\sin 2x$ について
 - (1) 2 曲線の概形を 1 つの xy 平面上に書け。
 - (2) 2 曲線で囲まれた図形のうち、区間 $[0,\pi]$ に部分の面積を求めよ。

(日本大)

◆曲線の接線と図形の面積

- **10**. 2曲線 $C_1: y = \log(x+a)$, $C_2: y = \frac{1}{2}x^2 + 2x + b$ がともに同じ点で直線 y = x + c に接するとき、
 - (1) *a*,*b*,*c*の値を求めよ。
 - (2) 曲線 C_1 , C_2 とy軸とで囲まれる図形の面積を求めよ。

(群馬大)

1 1. $0<\theta<\frac{\pi}{4}$ とし、 $a=\sin\theta$, $b=\cos\theta$ とおく。だ円 $C:x^2+\frac{y^2}{4}=1$ の内部で、 $a\leq x\leq b$ の部分の面積 S を θ で表せ。また S が、だ円の面積の $\frac{1}{3}$ になるとき、 θ の値を求めよ。

(東海大)

- **12**. 実数 t を媒介変数として、 $x = 3t^2$, $y = 3t t^3$ で表される曲線を考える。
 - (1) y を x の関数と考えて、y の増減を調べることによって、この曲線を xy 平面上に図示せよ。
 - (2) この曲線によって囲まれた部分の面積を求めよ。

(宇都宮大)

例題

1. (1)
$$x \log x - x + 1$$
 グラフ略 (2) $2 \log 2 - \frac{5}{4}$

2.
$$\frac{2}{\pi} - \frac{1}{5}$$

3. (1)
$$a > 1$$
 (2) $a - 1 - \log a$

4.
$$k = 3$$

5. (1)
$$y = x$$
 (2) $\frac{\pi^2}{32} - \frac{1}{4}$

6. (1)
$$1 - \frac{1}{2} \{ (e-1) \log t + e - t \}$$
 (2) $\frac{1}{2} \{ 1 - (e-1) \log (e-1) \}$

7.
$$\frac{2}{3}\sqrt{2}$$

問題

1.
$$\frac{e^2}{4} + \frac{1}{4}$$

2.
$$\sqrt{3} - \frac{\pi}{3}$$

3.
$$\frac{e^{\pi}+1}{2}$$

4. (1)
$$x = e, 1$$
 (2) $f(\sqrt{e}) = \frac{1}{4}$ (3) $3 - e$

5. (1)
$$-\frac{9}{8}$$
 (2) $\frac{3}{16}\sqrt{15}$

6.
$$\frac{2}{3}$$

7.
$$2 - \frac{8}{\pi} \log 2$$

8. (1)
$$\sin \alpha = \frac{-1+\sqrt{5}}{2}$$
, $\cos \alpha = \sqrt{\frac{-1+\sqrt{5}}{2}}$ (2) PS (3) $\sqrt{2} - \frac{\sqrt{5}+1}{2} - \frac{1}{2}\log \frac{\sqrt{5}-1}{2}$

9.
$$\frac{17}{4}$$

1 0. (1)
$$a = 2, b = \frac{3}{2}, c = 1$$
 (2) $\frac{5}{3} - 2\log 2$

(2)
$$\frac{5}{3} - 2 \log 2$$

1 1.
$$\pi - 4\theta$$
, $\theta = \frac{\pi}{12}$

1 2.
$$\frac{72}{5}\sqrt{3}$$