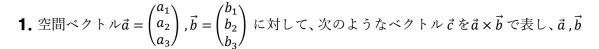
外積ベクトルの定義と応用



の外積という。

(性質1) \vec{c} は \vec{a} , \vec{b} と直交する。

(性質 2) \vec{c} の大きさは \vec{a} , \vec{b} の張る平行四辺形の面積 S に等しい。特に、 $\vec{a} \parallel \vec{b}$ ならば $\vec{c} = \vec{0}$ である。

(性質3) $\vec{a} \not\parallel \vec{b}$ のとき、 \vec{a} , \vec{b} , \vec{c} は右手系をなす。すなわち、 \vec{a} が右手の親指, \vec{b} が人差し指, \vec{c} が中指に対応する。さて、このとき、

$$\vec{c} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

であることを証明せよ。

2. a, b, c, d は $ad - bc \neq 0$ を満たす整数とする。O(0,0), A(a,c), B(a+b,c+d), C(b,d) の作る四角形 OABC を F とする。

- (1) Fの面積を求めよ。
- (2) F の周上を O から出発して、内部を右に見ながら一周するとき、O,A,B,C の順に 通過するための必要十分条件を a, b, c, d を用いて表せ。
- (3) x, y が共に整数のとき、点(x,y) を格子点とよぶ。F の面積が 1 のとき、その内部 (周は含まない) には格子点がないことを示せ。

(慶応大)

3. 空間内に直線 $l: \frac{x}{2} = \frac{y-1}{3} = z-2$ と点 A(1,2,1) がある。l と A の距離を求めよ。

4. xyz 空間内で、A(2,1,0) を通る直線 $l: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ と、点 B(5,1,3) がある。点 B を直線 I を軸として回転して得られる動点を P(x,y,z) とするとき、y の変域を求めよ。

解答

- 1. 略
- 2. (1) |ad bc| (2) 略 (3) 略

- $3. \sqrt{\frac{13}{7}}$
- 4. $3 \sqrt{5} \le y \le 3 + \sqrt{5}$