神戸大学 数学入試問題

◆文理共通

- 1. 次の問いに答えよ。
- (1) x, v についての連立方程式

$$\begin{cases} 3^{x} 2^{y} = 576 \\ \log_{\sqrt{2}} (y - x) = 4 \end{cases}$$

を解け。

- (2) 関数 $f(x) = (2x+1)(3x^2-5x+1)$ の x=1 における微分係数を求めよ。
- **2**. 0 でない整数 x, y に対して、y が x で割り切れるとき、 $x \angle y$ とかく。このとき次の問いに答えよ。
- (1) 次の(a),(b)の成立しない例をそれぞれあげよ。
 - (a) $x \angle y$ で $y \angle x$ のとき、x = y
 - (b) $x \angle v$, x = v, $v \angle x$ のうち少なくとも 1 つは成立する。
- (2) $x \angle y$ と $y \angle x$ が同時に成立するとき、 $x \sim y$ とかく。 $x \angle 1364$ となるような整数 x の個数を n とするとき、 $n \sim m$ なる整数 m をすべて求めよ。
- **3**. 5 つの方程式 $f_1(x) = 0$ … A, $f_2(x) = 0$ … B, $f_3(x) = 0$ … C, $f_4(x) = 0$ … D, $f_5(x) = 0$ … E はどれも解を持っており、これらの解について次の 5 つのこと,イ~ホ,がわかっている。
 - イ A の解でないものは B の解ではない。
 - ロ Cの解はどれもBの解ではない。
 - ハ D の解はどれも B の解である。
 - ニ Dの解はどれもEの解である。
 - ホEの解であるようなCの解がある。

このとき、次の命題(1)~(5)のうち正しいものの番号を記し、それらを証明せよ。証明に際しては、イ~ホのうちどれをどこで用いたかを明記せよ。

- (1) Eの解はどれもBの解である。
- (2) A の解のうちには C の解がある。
- (3) Dの解はどれも Aの解である。
- (4) Dの解でないような Eの解がある。
- (5) Eの解のうち少なくとも1つはAの解ではない。
- **4**. ベクトル **a**, **b** の内積を(**a**, **b**)で表し、|**a**| = $\sqrt{(\mathbf{a}, \mathbf{a})}$ とおく。 \mathbf{a}_n , \mathbf{b}_n ($n = 1, 2, \cdots$)

がベクトルで $|\mathbf{a}_n| \leq 1$, $|\mathbf{b}_n| \leq 1$, $\lim_{n \to \infty} |\mathbf{a}_n + \mathbf{b}_n| = 2$ のとき、 $\lim_{n \to \infty} |\mathbf{a}_n - \mathbf{b}_n|$ を求めよ。

- **5**. 一般に複素数 $\alpha = a + ib(a, b$ は実数, $i = \sqrt{-1}$)に対して、 $\overline{\alpha} = a ib$ とおく。このとき次の問いに答えよ。
- (1) α $,\beta$ がともに 0 でない複素数で、 $\alpha\beta$ が実数であれば、 β は α の実数倍であることを証明せよ。
- (2) α , β , γ , δ が互いに異なる 0 でない複素数であり、 $\alpha\gamma$, $\beta\delta$, $\alpha\delta$ + $\beta\gamma$ がすべて実数 であるとき、 α β の偏角と γ δ の偏角との関係にどんな関係があるか。ただし、偏角 θ の範囲は $0 \le \theta \le 2\pi$ とする。
- 6. $0 < a \le 1$, $|b| \le 1$, $0 \le a + b$ なる a, b を係数にもつ 3 次曲線 $y = ax^3 + bx + 1$ の全体を考え、これらの曲線上の点の全体を M で表す。このとき、

$$0 < x < 1$$
, $x^3 - x + 1 < y < x^3 + x + 1$

を満足する点(x,y)の全体は M に含まれるか。

- **7**. $0 \ge 1$ の間にある小数のうち $0.x_1x_2\cdots x_n$ ($n=1,2,\cdots$) と表される有限小数を β 数と呼ぶことにする。ただし、 x_1,x_2,\cdots,x_n はそれぞれ 1 か,または 2 とする。このとき、次の問いに答えよ。
- (1) とくn=5 としたとき β 数は全部でいくつあるか。
- (2) n が 1 , 2 $, \cdots$,と自然数を動いたときに得られる β 数の全体を B で表す。B には最小の β 数があるか。また最大の β 数があるか。

◆理系

- **8**. 正数からなる無限数列 a_1 , a_2 , …, a_n , … が $2a_n^3 = a_{n-1}^4$ (n=2, 3, …) を満たすとき、
- (1) a_n を n と a_1 で表せ。
- $(2) n \rightarrow \infty$ のとき、数列 $\{a_n\}$ が収束するような a_1 の範囲を求めよ。
- (3) 数列 {*a_n*}が収束するとき、その極限値を求めよ。
- **9**. 連続な関数 f(x)が $0 \le x$ において $\{f(x)\}^n = \int_0^x f(t) dt + 1$ を満足する (ここに、 $\{f(x)\}^n$ は関数 f(x)の n 乗を表す)。このとき、f(x)を求めよ。ただし、n は正の整数で、f(x) > 0 とする。

解答

1. (1)
$$(x, y) = \left(\pm\sqrt{10}, \pm\frac{\sqrt{10}}{100}\right), \left(\pm1, \pm\frac{1}{10}\right)$$
 (2) 1

- 2. (1) (a) x = a, y = -a (a は 0 でない整数) (b) x = 2, y = 3 (2) \pm 24
- 3. (3) (イ)より B⊂A, (ハ)より D⊂B ∴D⊂A
 (4) (ハ)より D⊂B, (ロ)より B∩C = φ ∴D∩C = φ (ホ)によ t t w、E∩C = φだから E∩C に含まれる元は D に含まれない。よって、(4)が成立
- 4 0

5. (1)
$$\alpha\beta = k (k$$
 は実数) とおくと、 $\beta = \frac{k}{\alpha} = \frac{k}{|\alpha|^2} \cdot \alpha$ より

(2)
$$\arg(\alpha - \beta) = \arg(\gamma - \beta)$$
 $\sharp t$: it $\arg(\alpha - \beta) \sim \arg(\gamma - \beta) = 2\pi$

- 6. 含まれる
- 7. (1) 32 個 (2) 0.1 が最小のβ数 , 最大のβ数は存在しない

8. (1)
$$a_n = 2\left(\frac{a_1}{2}\right)^{\left(\frac{4}{3}\right)^{n-1}}$$
 (2) $0 < a_1 \le 2$ (3) $a_1 = 2$ のとき 2, $0 < a_1 < 2$ のとき 0

9.
$$n=1$$
 のとき $f(x)=e^x$, $n \ge 2$ のとき $f(x)=n-1\sqrt{\frac{n-1}{n}x+1}$