1972年

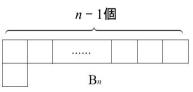
大阪大学 数学入試問題

- 1. (文・理) 曲線 $y = x(x-1)^2$ と直線 y = k とが相異なる3点で交わり、しかも、それらの交点のx座標が等比数列をなすように実数kを定めよ。
- 2. (文・理)2つの放物線 $y = ax^2 + b$, $y = -cx^2 + d$ (ただし、a > 0, c > 0, b > d とする) の頂点をそれぞれP, Qとする。これらの放物線の共通接線がy軸と交わる点をRとするとき、線分PRと線分QRの長さの比を求めよ。
- 3. (文・理) xに関する2次方程式 x^2 $4x\sin\theta$ + $2\tan\theta$ = 0 (ただし、 $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ とする)

がある。複素平面において、上の方程式の2解を表す点をP,Qとし、原点をOとするとき

- (1) 平面上のベクトル \overrightarrow{OP} と \overrightarrow{OO} の内積を θ を用いて表せ。
- (2) 3角形OPQが直角3角形になるように θ の値を定めよ。
- 4. (文・理)n個($n \ge 4$)の正方形をそれぞれ次のようにならべた図形 A_n , B_n がある。 A_n , B_n のそれぞれにおいて1からnまでの数をもれなく1つずつ各正方形に入れて、次の2つの条件を満足するようにする。
- 形に入れて、次の2つの条件を満足するようにする。

 (i) 同一の行(横の並び)のどの2つの数をとっても右
 の数が左の数より大きい。
- (ii) 同一の列 (縦の並び) の2つの数は下の数が上の数より大きい。



n-2個

このような入れ方が A_n についてはf(n)通り、 B_n についてはg(n)通りあるとする。

- (1) n≥5のとき、Anにおいて数nを入れることができる正方形の選び方は何通りあるか。
- (2) *n*≥5のとき、*f*(*n*)=*f*(*n*-1)+*g*(*n*-1) が成り立つことを示せ。
- (3) f(n)およびg(n)をnを用いて表せ.

5. (理) 数列
$$\{a_n\}$$
において $\begin{cases} (\sin\theta)a_{n-1} - (\theta + \sin\theta)a_n + \theta a_{n+1} = 0 & (n \ge 1) \\ (\sin\theta)a_0 - \theta a_1 = 0 \end{cases}$ という関係があ

る。ただし、
$$0 < \theta \le \frac{\pi}{2}$$
とする。

- (1) 一般項 a_n を a_0 と θ を用いて表し、 $\sum\limits_{n=0}^{\infty}a_n$ が収束することを示せ。
- (2) 条件 $\sum_{n=0}^{\infty} a_n = 1$ を満たしながら a_0 と θ が動くとき、おのおののn ($n \ge 1$) について a_n の 最大値を求めよ。
- **6**. (理) 関数 $f(x) = \frac{1}{2}(x+1-|x-1|)$ のグラフが、直線 x=a を軸とする放物線 y=g(x) と 2つの点で接するという。
- (1) 関数g(x)を求めよ。
- (2) g(x)のグラフがx軸から切り取る線分の長さを求めよ。
- (3) f(x)のグラフとg(x)のグラフとによって囲まれた図形の面積を求めよ。
- 7. (理)次の条件を満たす点Pの範囲を図示せよ。

条件: 放物線 $y = x^2 + 4x$ 上に直線OPに関して対称な相異なる2点が存在する。ただし、O は原点である。